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The quantit ies cha rac t e r i z ing  the t e m p e r a t u r e  fluctuations taking p lace  in mul t i l ayered  walls 
a r e  e x p r e s s e d  in the f o r m  of the so -ca l l ed  "hea t -a s s imi la t ion  coefficient ."  An approx imate  
method of determining the damping of the t e m p e r a t u r e  fluctuations is p roposed .  

In solving p r o b l e m s  of the kind envisaged by operat ional  methods,  the ampli tude of the t e m p e r a t u r e  f luc-  
tuations in the c ro s s  sect ion of the wall  may be exp re s sed  [1] in the fo rm 

t , .  (x) = t . ,  ( N i N _ i )  '/2 . (1) 

where  N i and N_i a r e  de te rmined  by the conditions of the p rob lem.  
to [21 

N i l  

For  a s ing l e - l aye red  wall these a r e  equal 
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We see f r o m  Eq. (2) that the s ame  quantity (a/w) t/2 en te rs  into the a rguments  of the hyperbol ic  functions and 
into the coeff icients  of  these functions.  Lykov defined this quantity as  the "hea t - a s s imi l a t ion  coefficient" [1] 

V a = ~. (3) 

According to Eq. (3) the quantity ~ is  cha rac t e r i zed  by the thermophys ica l  p r o p e r t i e s  of  the mate r i a l  and 
the cyclic f requency of the thermal  flux fluctuation. By i ts  ve ry  nature  this quantity const i tu tes  a p a r a m e t e r  
of the h e a t - t r a n s f e r  p r o c e s s  assoc ia ted  with harmonic  t e m p e r a t u r e  va r i a t ions .  The quantity ~ has the d imen-  
sions of length (In). 

we  may e x p r e s s  the complexes  of quanti t ies enter ing into Eq. (2) in the following way: 

x a = ~ -  = Dx' (4) 

V " co 8 = D .  ( 5 )  
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where D x is the relat ive coordinate,  and D is the relat ive thickness of the layer.  

The dimensionless  quantities Dx and D are  general ized var iables .  Gukhman showed [3] that any genera l -  
ized var iable  might be represen ted  in the form of a rat io between two s imi lar  quantities. The denominator of 
such a ratio has become known as the "charac te r i s t i c  scale." 

In Eqs.  (4) and (5) the charac te r i s t i c  scale is ~. 

The quantity S is well known in building thermophys ics  as the rat io of the thermal- f lux amplitude to the 
temperature  amplitude at the surface of a thick layer: 

q~. (x) _ V ~ ' w  = s .  (7) 
t,. (x) 

This in terpreta t ion of S was f i rs t  given by Vlasov [4]. Following the investigations of Vlasov and Muromov [5], 
Shklover developed a method of approximately determining the damping of the t empera tu re  fluctuations in the 
walls of buildings [6]. In Shldover 's  equations the damping of the temperature  fluctuations is expressed in the 
form of a function of the quantities S, Y, and D = SR. Here Y (like S) is the ratio of thermal flux and tempera-  
ture amplitudes,  but measured  at the surface of a thin layer ,  a t  which the laws of a semiinfinite solid are  brqk-  
en and this rat io ceases  to be a constant quantity. 

Using the pa rame te r  ~ as cha rac te r i s t i c  scale ,  the physical  nature of S and Y may be expressed in another 
way. 

According to (6), S is the thermal conductivity of a layer  of thickness ~. For  Ax = ~ the relative thickness 
of the layer  equals the dimensionless  unit (AD x = 1). 

Thus S is the thermal  conductivity of a layer  having a relat ive thickness of unity. 

We express  (5) in the form 

/9=8F0, 8 ~/ ~ R a = -f-X -d- = SR= I (8) 
S 

If we understand S as the thermal conductivity of a unit dimensionless layer, then according to (8) the 

dimensionless thickness D is the ratio of the thermal resistance of a particular layer to the resistance of a 
layer of unit thickness. 

Equation (8) may be obtained directly from the equation 6 = IR on rewriting the latter after allowing for 

the use of relative coordinates 

R, (9) 

and then 

D = SR. (8a) 

The thermal flux and the boundary condition of the fourth kind are here  empressed by the equations 

tg ~r~+l Sa 
- -  , ~ 

t g ~  Sn+ l  (11) 
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It follows f rom Eqs. (8a) and (10) that, on pass ing to relat ive coordinates ,  the quantity S, being a p rope r -  
tionality factor ,  plays the par t  of the thermal conductivity X. On th i sbas i s  S may be defined as the cyclical  
thermal conductivity (W/m 2. K). 

We see f rom (11) that, if we take the pa rame te r  ~ as the unit measured  along the horizontal  axis, the 
ratio between the slopes of the tangents to the temperature  curve at the interface between the l ayers  is i nve r se -  
ly proport ional  to the rat io between the cyclical  thermal conduetivities. 

In o rde r  to derive approximate formulas  for the damping of the temperature  fluctuations in the layer ,  we 
shall assume that Eq~ (11) also extends to the temperature  amplitude. 

F rom Eqo (11) we find 

l 

t g ~ . =  S. i ' (12)  

I 

tg~,+~ S~+, I (13) 

According to (12) and (13) the angles ~n and ~n + 1 may be obtained if we set off segments equal to the dimen- 
sionless unit along the horizontal  axis and distances rec iproca l  to  the cycl ical  thermal conductivities S n and 
Sn + 1 along the ver t ical  axis (Fig. la) [2]. If the layer  n is "thin" (D n < 1), then not only the l aye r  n, but also 
(to some extent) the l ayer  n -  1, l i eswi th in the th ickness  of the unit section AB (Fig. lb). The thermal conduc- 
tivity of such an inhomogeneous unit section we may call Yn ~ Let us express  this as the sum of the thermal  
conductivities of  the sections AL and LB: 

Y, = Y,_, (I - -  Dn) + S,~D,~. 

Analysis shows that Eq. (14) is  only valid for Sn/Yn_ 1 >_ 1. If Sn/Yn-1 < 1, then 

1 t 1---- -= (l - -  D,) y---~ + O, - - .  (15) 

Since (1-Dn) (1/Yn_l) = RAL and Dn(1/Sn) = R n = RLB, Eq. (15) reduces  to the form 

(PaL -4- RLB) Y. ~ 1. (16) 

This lat ter  form has the sense of Eq. (8a) in which D = 1. For  D n _> 1,Yn= Sn [6]. 

Thus, if of two continuous layers  n and n + 1 layer  n is thin (D n < 1), Eq. (11) will take the following form 
for purposes of approximate calculations 

tg~.+,. = J_._. (17) 

According to [2] the damping of the temperature  fluctuations over  the thickness of the layer  may be ap- 
proximately represented in the following way: At the inner surface of the layer,  within a region of relative 
thickness unity, the change in amplitude takes place l inearly;  subsequently it proceeds exponentially r ight up 
to the outer surface,  as in a semiinfinite solid (Fig. 2a)~ If the relat ive thickness of the layer  is less than 
unity, the change of amplitude is approximated by a straight  line throughout the whole thickness. 

Let us consider the damping of  the t e m p e r ~ u r e  fluctuations in a "thin n layer.  In accordance with Eqo (12) 
we set off a segment AB equal to unity, proceeding f rom the inner surface of the layer  along the horizontal  axis 
(Fig~ 2b). The damping of the temperature  fluctuations in layer  n is e~pressed by the equation 

NM -+- MC t g ~  D~ -k 1. (18) 
BP tg ~._1 
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Fig. 1. D iagram i l lus t ra t ing the meaning of Eqs.  (11), (12), (13) (a) and Eq. 17 
(b). 

Fig. 2. Damping of t e m p e r a t u r e  f luctuations for  ~D n > 1 (a) and D n _< 1 (b). 

Allowing for  (17), we finally obtain 

Y. iDn + S. '% = - /19) 
S,, 

In a l ayer  of cons iderable  thickness  (D n > 1; Fig. 2a) the damping of the t e m p e r a t u r e  f luctuations is  
e x p r e s s e d  by the equation 

"% = ~'ecvc.F. (20) 

We find the damping of the f luctuations in unit sect ion BC f r o m  Eq, (19): 

Y.-I § S. 
vBc = (21) 

S.  

We de te rmine  the damping of the f luctuations beyond the unit sect ion as in a semiinfini te  solid: 

0 ox ( (22) 

As a r e su l t  of this ,  the damping of  the t empe ra tu r e  fluctuations in l ayer  n of a mul t i l ayered  wall  will be 
given by the following equations: 

fo r  D n > 1 

v,, S~ J 

for  D n - 1 - b y  Eq, (19). 

For  the f i r s t  l aye r ,  according  to [6, 7] Yn-1 = Y0 = aB, and hence for  D 1 > 1 

+ Sz .], (24) ~ = 0~5exp ( ~ )  [ S, 

for  D 1 _< 1 

u  
Sz (25) 
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The damping of the t e m p e r a t u r e  fluctuations on pass ing  f r o m  the outer  a i r  to the inner  su r face  of the 
wall is obtained f rom Eq .  (19) if we take Sn = VC)ut and D n = Dou t = 1 [7]: 

~ u t +  Y 
tout . . . . .  (26) 

Ollt 

The quantity Yn in (19) and (23)-(26) is the thermal  conductivity of  an inhomogeneous unit l aye r .  This 
quantity i s  de te rmined  by the express ions :  

for layer  n 

for the f i r s t  l ayer  

= Y+' "l - S~'D~, (27) 

y~l = cr (I - -  DI) -~- S~:'D I. (28) 

In (27) and (28) the power indices are positive for Sn/Yn_ I >_ 1, Sl/oqn ~_ 1 and negative if these ratios are 
smaller than unity~ For Dn -~ 1 

Yn = St,. (29) 

Equations (23), (24), (26), and (29) a r e  the same  as in the method of Shklover.  The e r r o r  of the approxi-  
mation in the method desc r ibed  in this pape r  is also the same as that of the Shklover calculat ion (:e 15%). 

N O T A T I O N  

a, t he rma l  diffusivity; X, t h e r m a l  conductivity; c, specif ic  heat;  3/, bulk m a s s  of the ma te r i a l ;  w, cycl ical  
f requency of the fluctuations; x, coordinate;  5, th ickness  of layer ;  R, t he rma l  res i s t ance ;  tin, ampli tude of the 
t empera tu re  fluctuation in the outer  air ;  tm(x), qm(x), ampl i tudes  of the t e m p e r a t u r e  and thermal  flux f luctua-  
tions in sec t ion  x; O~out, O~in, h e a t - t r a n s f e r  coefficients of the ou te r  and inner su r faces  of the wall. 

L I T E R A T U R E  CITED 

1. A . V .  Lykov, Theory  of Heat  Conduction [in Russian] ,  Vysshaya  Shkola, Moscow (1967). 
2. V . V .  Nasedkin and A. P.  Nasedkina,  "Graphica l -ana ly t ica l  method of de termining  the damping of t e m p e r a -  

ture f luctuations in the wai ls  of buildings," Art ic le  deposi ted in VINITI (All-Union Insti tute of Scientific 
and Technical  Informat ion) ,  Reg. No. 2316-74. 

3. A . A .  Gukhman, Application of Similar i ty  Theory to Hea t -  and M a s s - T r a n s f e r  P r o c e s s e s  [in Russian] ,  
Vysshaya  Shkola, M(~scow (1974). 

4. O . E .  Vlasov,  Plane Heat  Waves [in Russian] ,  Izv.  Teplotekh. Ins t . ,  No. 3/26 (1927). 
5. S . I .  Muromov,  Calculated Outer  Air T e m p e r a t u r e s  and the Heat  Res i s t ance  of Buildings [in Russian] ,  

Stroiizdat,  Moscow (1939). 
6. A .M.  Shklover,  Heat  T r a n s f e r  Subject to Per iodic  Thermal  Actions [in Russian],  Gos~nergoizdat ,  Moscow 

(1961). 
7. V.V. Nasedkin, in: Questions of Heating and Ventilation [in Russian], No. 4, RISI, Rostov-on-Don 

(1974). 

1574 


